Analysis of AgoshRNA maturation and loading into Ago2
نویسندگان
چکیده
The RNA interference (RNAi) pathway was recently expanded by the discovery of multiple alternative pathways for processing of natural microRNA (miRNA) and man-made short hairpin RNA (shRNA) molecules. One non-canonical pathway bypasses Dicer cleavage and requires instead processing by Argonaute2 (Ago2), which also executes the subsequent silencing step. We named these molecules AgoshRNA, which generate only a single active RNA strand and thus avoid off-target effects that can be induced by the passenger strand of a regular shRNA. Previously, we characterized AgoshRNA processing by deep sequencing and demonstrated that-after Ago2 cleavage-AgoshRNAs acquire a short 3' tail of 1-3 A-nucleotides and are subsequently trimmed, likely by the poly(A)-specific ribonuclease (PARN). As a result, the mature single-stranded AgoshRNA may dock more stably into Ago2. Here we set out to analyze the activity of different synthetic AgoshRNA processing intermediates. Ago2 was found to bind preferentially to partially single-stranded AgoshRNA in vitro. In contrast, only the double-stranded AgoshRNA precursor associated with Ago2 in cells, correlating with efficient intracellular processing and reporter knockdown activity. These results suggest the presence of a cellular co-factor involved in AgoshRNA loading into Ago2 in vivo. We also demonstrate specific AgoshRNA loading in Ago2, but not Ago1/3/4, thus further reducing unwanted side effects.
منابع مشابه
Towards Antiviral shRNAs Based on the AgoshRNA Design
RNA interference (RNAi) can be induced by intracellular expression of a short hairpin RNA (shRNA). Processing of the shRNA requires the RNaseIII-like Dicer enzyme to remove the loop and to release the biologically active small interfering RNA (siRNA). Dicer is also involved in microRNA (miRNA) processing to liberate the mature miRNA duplex, but recent studies indicate that miR-451 is not proces...
متن کاملDeep Sequence Analysis of AgoshRNA Processing Reveals 3' A Addition and Trimming
The RNA interference (RNAi) pathway, in which microprocessor and Dicer collaborate to process microRNAs (miRNA), was recently expanded by the description of alternative processing routes. In one of these noncanonical pathways, Dicer action is replaced by the Argonaute2 (Ago2) slicer function. It was recently shown that the stem-length of precursor-miRNA or short hairpin RNA (shRNA) molecules is...
متن کاملInfluence of the loop size and nucleotide composition on AgoshRNA biogenesis and activity
Short hairpin RNAs (shRNAs) are widely used for gene silencing by the RNA interference (RNAi) mechanism. The shRNA precursor is processed by the Dicer enzyme into active small interfering RNAs (siRNAs) that subsequently target a complementary mRNA for cleavage by the Argonaute 2 (Ago2) complex. Recent evidence indicates that shRNAs with a relatively short basepaired stem bypass Dicer and are in...
متن کاملToward optimization of AgoshRNA molecules that use a non-canonical RNAi pathway: variations in the top and bottom base pairs.
Short hairpin RNAs (shRNAs) are widely used for gene knockdown by inducing the RNA interference (RNAi) mechanism. The shRNA precursor is processed by Dicer into small interfering RNAs (siRNAs) and subsequently programs the RNAi-induced silencing complex (RISC) to find a complementary target mRNA (mRNA) for post-transcriptional gene silencing. Recent evidence indicates that shRNAs with a relativ...
متن کاملNovel AgoshRNA molecules for silencing of the CCR5 co-receptor for HIV-1 infection
Allogeneic transplantation of blood stem cells from a CCR5-Δ32 homozygous donor to an HIV-infected individual, the "Berlin patient", led to a cure. Since then there has been a search for approaches that mimic this intervention in a gene therapy setting. RNA interference (RNAi) has evolved as a powerful tool to regulate gene expression in a sequence-specific manner and can be used to inactivate ...
متن کامل